Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 667: 32-43, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38615621

RESUMEN

It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.


Asunto(s)
Membranas Artificiales , Tecnología Química Verde , Adsorción , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Fosfatos/química , Fosfatos/aislamiento & purificación , Polímeros/química , Propiedades de Superficie , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/aislamiento & purificación , Amidas/química , Amidas/aislamiento & purificación , Tamaño de la Partícula , Purificación del Agua/métodos , Cosméticos/química , Cosméticos/aislamiento & purificación
2.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38607155

RESUMEN

In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.

4.
Bioelectrochemistry ; 157: 108650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38286079

RESUMEN

Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.


Asunto(s)
Desulfovibrio , Acero , Corrosión , Biopelículas , Sulfatos , Plancton/microbiología , Medios de Cultivo
5.
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38217907

RESUMEN

Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.


Asunto(s)
Galvanoplastia , Molibdeno , Dodecil Sulfato de Sodio/química , Molibdeno/farmacología , Molibdeno/química , Antibacterianos/farmacología , Antibacterianos/química , Zinc/química , Escherichia coli
6.
Bioelectrochemistry ; 156: 108633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160511

RESUMEN

In this study, a novel Cu-based (Cu55Al20Ni12Ti8Si5, at.%) medium-entropy alloy (MEA) coating was prepared by high-velocity oxygen-fuel (HVOF) spraying technology. Thermo-Calc was employed to simulate the phase diagram of the alloy system. Phase composition and microstructure of the as-sprayed coating were characterized by means of XRD, FESEM, TEM and STEM/EDX. The effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of the coating and the as-cast Ni-Al bronze (NAB) was investigated using electrochemical measurements and surface characterization. The Thermo-Cala simulation results showed that the alloy system presented a single BCC solid solution phase, while the detailed characterization of microstructure indicated that a few NiTi-rich B2-ordered precipitates could be also found in the as-sprayed coating other than the Cu-rich BCC matrix. Electrochemical studies illustrated that the coating exhibited superior corrosion resistance than the NAB in SRB medium, the corrosion acceleration efficiency induced by SRB of the NAB (95.3 %) was more severe than that of the coating (63.8 %). Surface analysis results demonstrated the occurrence of pitting corrosion and the formation of Cu2S on the coating surface after corroded in SRB medium. Corrosive metabolite HS- induced microbiologically influenced corrosion was considered as the main corrosion acceleration mechanism caused by SRB.


Asunto(s)
Aleaciones , Desulfovibrio , Aleaciones/química , Corrosión , Entropía , Oxígeno , Cobre/química
7.
Front Microbiol ; 14: 1304703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075932

RESUMEN

A large amount of nuclear waste produced in the process of nuclear energy utilization has always been a key problem to be solved urgently for nuclear safety. At present, "deep geological disposal" is a feasible method and generally accepted by many countries. The oxygen content in the near field environment of the waste container will decrease to anaerobic conditions, and hydrogen will permeation into the internal materials of container for a long time. Hydrogen evolution corrosion may cause a risk of hydrogen embrittlement. The harm of hydrogen embrittlement in metal container is far more severe than predictable uniform corrosion. It is a research hotspot that the microorganisms impact on the corrosion behavior of container materials in the deep geological environment. Microbial corrosion in deep geological environments can be divided into two types: aerobic microbial corrosion and anaerobic microbial corrosion. There is a type of hydrogen consuming microorganism in the natural environment that uses the oxidation of hydrogen as the energy for its life activities. This provides a new approach for us to study reducing the hydrogen embrittlement sensitivity of nuclear waste container materials.

8.
Microorganisms ; 11(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37764038

RESUMEN

A microbiologically influenced corrosion (MIC) causes huge economic losses and serious environmental damage every year. The prevention and control measures for MIC mainly include physical, chemical, and biological methods. Among them, biocide application is the most cost-effective method. Although various biocides have their own advantages in preventing and treating MIC, most biocides have the problem of polluting the environment and increasing microorganism resistance. Therefore, it has stimulated the exploration of continuously developing new environmentally friendly and efficient biocides. In this review, the application advantages and research progress of various biocides used to prevent and control MIC are discussed. Also, this review provides a resource for the research and rational use of biocides regarding MIC mitigation and prevention.

9.
Adv Sci (Weinh) ; 10(31): e2302446, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37767950

RESUMEN

Electrochemical oxygen reduction reaction (ORR) is an attractive and alternative route for the on-site production of hydrogen peroxide (H2 O2 ). The electrochemical synthesis of H2 O2 in neutral electrolyte is in early studying stage and promising in ocean-energy application. Herein, N-doped carbon materials (N-Cx ) with different N types are prepared through the pyrolysis of zeolitic imidazolate frameworks. The N-Cx catalysts, especially N-C800 , exhibit an attracting 2e- ORR catalytic activity, corresponding to a high H2 O2 selectivity (≈95%) and preferable stability in 0.5 m NaCl solution. Additionally, the N-C800 possesses an attractive H2 O2 production amount up to 631.2 mmol g-1  h-1 and high Faraday efficiency (79.8%) in H-type cell. The remarkable 2e- ORR electrocatalytic performance of N-Cx catalysts is associated with the N species and N content in the materials. Density functional theory calculations suggest carbon atoms adjacent to graphitic N are the main catalytic sites and exhibit a smaller activation energy, which are more responsible than those in pyridinic N and pyrrolic N doped carbon materials. Furthermore, the N-C800 catalyst demonstrates an effective antibacterial performance for marine bacteria in simulated seawater. This work provides a new insight for electro-generation of H2 O2 in neutral electrolyte and triggers a great promise in ocean-energy application.

10.
Microorganisms ; 11(8)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37630579

RESUMEN

Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.

11.
Bioelectrochemistry ; 154: 108539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37579554

RESUMEN

Deterioration corrosion occurs between the external surface of oil pipelines and aerobic oil-degrading microorganisms in oil fields. Microorganisms with aerobic oil pollution remediation capabilities may catalyze more serious anaerobic microbial corrosion due to the carbon source supply. In this study, Acinetobacter soli strains were isolated from oil-contaminated environments, and their role in the deterioration corrosion behavior of X70 steel in an oil-water environment was investigated using the EDS multipoint scanning method. The presence of oil controls the deposition of carbon and phosphorus and diffusion of oxygen, leading to significant adhesion attraction and initial growth inhibition of biofilm on the metal surface. A. soli facilitates oxygen transfer and iron ion dissolution, thereby accelerating the pitting corrosion of X70 steel. This corrosion of the X70 steel, in turn, further accelerates the microbial degradation of oil, inhibiting the appearance of calcareous scale in the later stage of corrosion. The corrosion of X70 steel is influenced by microbial degradation, and the specific corrosion behaviors are related to the activity of A. soli in the petroleum environment. This study sheds light on the corrosion mechanisms of X70 steel by A. soli at different stages, providing insights into the interactions between microorganisms, oil pollution, and metal corrosion in oil fields.


Asunto(s)
Biopelículas , Acero , Corrosión , Carbono , Agua
12.
Int J Biol Macromol ; 246: 125653, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399867

RESUMEN

Coaxial electrospun coatings with antibacterial and anticorrosion properties have a marked potential to protect against corrosion in marine environments. Ethyl cellulose is a promising biopolymer for corrosion caused by microorganisms owing to its high mechanical strength, nontoxicity, and biodegradability. In this study, a coaxial electrospun coating loaded with antibacterial carvacrol (CV) in the core and anticorrosion pullulan (Pu) and ethyl cellulose (EC) as a shell layer was successfully fabricated. The formation of core-shell structure was confirmed using transmission electron microscopy. Pu-EC@CV coaxial nanofiber had small diameters, uniform distribution, smooth surface, strong hydrophobicity, and no fractures. Electrochemical impedance spectroscopy was used to analyze corrosion of the electrospun coating surface in a medium containing bacterial solution. The results indicated significant corrosion resistance of the coating surface. In addition, the antibacterial activity and mechanism of coaxial electrospun were studied. The Pu-EC@CV nanofiber coating exhibited excellent antibacterial properties by effectively increasing the permeability of cell membranes and killing bacteria, as determined by plate counts, scanning electron microscopy, cell membrane permeability, and the activity of alkaline phosphatase. In summary, the coaxial electrospun pullulan-ethyl cellulose embedded with CV coating can be used as antibacterial and anticorrosion materials and may have potential applications in the field of marine corrosion.


Asunto(s)
Nanofibras , Corrosión , Antibacterianos/farmacología
13.
Can J Microbiol ; 69(8): 309-320, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156011

RESUMEN

In this paper, high-throughput sequencing technology was adopted to visualize the microbial communities on the surfaces of two types of carbon steel immersed in Sea Area Ⅰ. The results showed that different microbial communities were formed on different carbon steel surfaces, in which the genus with the highest abundance on the surface of Q235 was Escherichia-Shigella, while anaerobic Desulfovibrio on the surface of 921a was the most abundant, and the dominant genus varied with the depth of the rust layer. In addition, the distribution of sulfate-reducing bacteria (SRB) on the surface of Q235 submerged in Sea Area Ⅱ was compared with the sulfate-reducing bacteria's distribution in Sea Area Ⅰ, using the environmental factors correlation analysis. The results showed that the concentrations of Ca2+, Na+, K+, Mg2+, and Al3+ were positively correlated with the distribution of SRB, while the concentrations of Cu2+, Zn2+, SO4 2-, Cl-, NO3 -, and organic carbon were negatively correlated with it. Furthermore, there was a highly significant correlation between each geochemical factor and Desulfotomaculum (p < 0.01).


Asunto(s)
Cáusticos , Microbiota , Acero , Agua de Mar/microbiología , Sulfatos , Carbono
14.
Colloids Surf B Biointerfaces ; 225: 113248, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905834

RESUMEN

The sensitive and rapid detection of dopamine (DA) is of great significance for early diagnosis of related diseases. Current detection strategies of DA are time-consuming, expensive and inaccurate, while biosynthetic nanomaterials were considered highly stable and environment friendly, which were promising on colorimetric sensing. Thus, in this study, novel zinc phosphate hydrate nanosheets (SA@ZnPNS) biosynthesized by Shewanella algae were designed for the detection of DA. SA@ZnPNS showed high peroxidase-like activity which catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Results showed that the catalytic reaction of SA@ZnPNS followed Michaelis-Menton kinetics, and catalytic process conformed to ping-pong mechanism with chief active species of hydroxyl radicals. The colorimetric detection of DA in human serum samples was performed based on SA@ZnPNS peroxidase-like activity. The linear range of DA detection was 0.1-40 µM, and the detection limit was 0.083 µM. This study provided a simple and practical method for the detection of DA and expanded the application of biosynthesized nanoparticles to biosensing fields.


Asunto(s)
Materiales Biomiméticos , Peroxidasa , Humanos , Dopamina , Peróxido de Hidrógeno , Peroxidasas , Fosfatos , Colorimetría/métodos , Límite de Detección
15.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768764

RESUMEN

Exploring new and high efficiency mimic enzymes is a vital and novel strategy for antibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides. However, few materials have displayed halogenating catalytic performance until now. Herein, we synthesized N-doped C/CeO2 (N-C/CeO2) composite materials by a combination of the liquid and solid-state method. N-C/CeO2 can possess haloperoxidase-like catalytic activity by catalyzing the bromination of organic signaling compounds (phenol red) with H2O2 at a wide range of temperatures (20 °C to 55 °C), with a solution color changing from yellow to blue. Meanwhile, it exhibits high catalytic stability/recyclability in the catalytic reaction. The synthesized N-C/CeO2 composite can effectively catalyze the oxidation of Br- with H2O2 to produce HBrO without the presence of phenol red. The produced HBrO can resist typical marine bacteria like Pseudomonas aeruginosa. This study provides an efficient biomimetic haloperoxidase and a novel sustainable method for antibacterial application.


Asunto(s)
Peróxido de Hidrógeno , Fenolsulfonftaleína , Carbono , Biomimética , Oxidación-Reducción
16.
ACS Appl Mater Interfaces ; 14(45): 51275-51290, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36321761

RESUMEN

Herein, layer-by-layer MXene/graphene oxide nanosheets wrapped with 3-aminopropyltriethoxy silane (abbreviated as F-GO@MXene) are proposed as an anti-corrosion promoter for waterborne epoxies. The GO@MXene nanohybrid is synthesized by a solvothermal reaction to produce a multi-layered 2D structure without defects. Then, the GO@MXene is modified by silane wrapping under a reflux reaction, in order to achieve chemical stability and to create active sites on the nanohybrid surface for reaction with the polymer matrix of the coating. The organic coating modified with 0.1 wt % F-GO@MXene has revealed superior corrosion protection efficiency than the organic coatings modified with either F-GO or F-MXene nanosheets. The impedance modulus at low frequency for the pure epoxy, epoxy/F-MXene, epoxy/F-GO, and epoxy/F-GO@MXene coatings is 4.17 × 105, 5.5 × 108, 4.46 × 108, and 1.14 × 1010 Ω·cm2 after 30 days of immersion in the corrosive media, respectively. The remarkable anti-corrosion property is assigned to the intense effect of the nanohybrid on the barrier performance, surface roughness, and adhesion strength of the epoxy coating. The complemental analysis based on first-principles density functional theory reveals that the adhesion strength related to the silane functional groups in its complexes follows the order F-GO@MXene > F-MXene > F-GO. The enhanced stabilization predicted on the GO@MXene nanohybrid ultimately stems from the combined role of the electrostatic and van der Waals forces, suggesting an increase in the penetration path of the corrosive media.

17.
Adv Mater ; 34(39): e2205064, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35927935

RESUMEN

Water-current energy is an enormous and widely distributed clean energy in nature, with different scales from large ocean flow to small local turbulence. However, few effective technologies have been proposed to make use of different forms of water currents as a power source. Here, high-performance paired triboelectric nanogenerators (P-TENGs) capable of integrating massively into a thin flexible layer as a structured triboelectric surface (STS) are demonstrated for harvesting water-current energy. Novel gas packet exchange structure and rigid-flexible coupling deformation mechanism are introduced to ensure that the device can work very effectively even in deep water under high water pressure. The rationally designed TENG array in the STS enables highly efficient power take-off from the flow. Typically, the STS demonstrates a high-frequency output up to 57 Hz, largely superior to current TENG devices, and the power density is improved by over 100 times for triboelectric devices harvesting current energy. The flexible STS is capable of attaching to various surfaces or applying independently for self-powered sensing and underwater power supply, showing great potential for water-current energy utilization. Moreover, the work also initiates universal strategies to fabricate high-frequency devices under large environment pressure, which may profoundly enrich the design of TENGs.

18.
Materials (Basel) ; 15(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897572

RESUMEN

This study investigated the anti-corrosion performance of commercial amino alcohol migratory corrosion inhibitors (MCIs) on concrete that underwent varying degrees of chloride erosion. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD), scanning electron microscopy, and energy dispersive spectroscopy (SEM-EDS) analyses were performed to study the anti-corrosion performance and mechanism of the MCIs on the steel bars. The results indicated that the corrosion resistance of the steel bars in concrete was significantly improved by coating with the MCIs, and the earlier the specimens were coated with the MCIs, the higher the anti-corrosion efficiency. The anti-corrosion efficiency was 55.35% when the MCIs coating was applied before chloride erosion; however, the anti-corrosion efficiency decreased to 3.40% when the MCIs coating was applied after the ninth drying-wetting cycle. The improvement in corrosion resistance of the steel bar in concrete coated with MCIs was due to the protective MCIs-molecule film that formed on the steel bar surfaces, and the oxidative dissolution of iron at the anode was effectively inhibited by the MCIs coating.

19.
J Colloid Interface Sci ; 626: 815-823, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35820216

RESUMEN

An inorganic-organic composite coating is an effective way to solve the issue of marine organism attachment and realize multi-element synergistic antifouling. Herein, Bi2WO6/boron-grafted polyurethane composite coatings (BWOB) composed of Bi2WO6 with three morphologies (nanosheet, flower and microsphere) and boron-grafted polyurethane (ITB) were successfully synthesized to achieve high-efficiency antifouling. Bi2WO6 nanoparticles were evenly distributed on the surface and inside the ITB to form micro/nanostructures. In the composite coatings doped with flower-shaped Bi2WO6, BWOB-5 showed excellent antibacterial and antidiatom adhesion properties, achieving 95.43% and 98.38% against Escherichia coli and Staphylococcus aureus, respectively, and 98.62% against Nitzschia closterium. In addition, the micro/nanostructure on the surface, the stable production of hydroxyl radicals (·OH) and superoxide radicals (·O2-) during photocatalysis, and the antifouling functional groups of the resin matrix in the BWOB composite coatings were all conducive to photocatalytic antifouling activity. More importantly, BWOB coatings exhibited excellent environmentally friendly properties. Therefore, BWOB coatings are expected to have potential application value in the field of photocatalytic sterilization and antifouling.


Asunto(s)
Incrustaciones Biológicas , Poliuretanos , Incrustaciones Biológicas/prevención & control , Boro , Escherichia coli , Poliuretanos/farmacología , Staphylococcus aureus , Propiedades de Superficie
20.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683799

RESUMEN

A novel visible light-driven AgBr/AgCl@ZIF-8 catalyst was synthesized by a simple and rapid method. The composition and structure of the photocatalyst were characterized by XRD, SEM, UV-DRS, and XPS. It could be observed that the 2-methylimidazole zinc salt (ZIF-8) exhibited the rhombic dodecahedron morphology with the AgCl and AgBr particles evenly distributed around it. The composite photocatalyst AgBr/AgCl@ZIF-8 showed good photocatalytic degradation and antibacterial properties. The degradation rate of RhB solution was 98%, with 60 min of irradiation of visible light, and almost all P. aeruginosaudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) were inactivated under the irradiation of 90 min. In addition, the prepared catalyst had excellent stability and reusability. Based on the free radical capture experiment, ·O2- and h+ were believed to be the main active substances, and possible photocatalytic degradation and sterilization mechanisms of AgBr/AgCl@ZIF-8 were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...